Показаны сообщения с ярлыком вселенная. Показать все сообщения
Показаны сообщения с ярлыком вселенная. Показать все сообщения

пятница, 3 июня 2016 г.

Почему Вселенная, возможно, является голограммой?

В 1982 году произошло замечательное событие. В Парижском университете исследовательская группа под руководством физика Alain Aspect провела эксперимент, который может оказаться одним из самых значительных в 20 веке. 
Aspect и его группа обнаружили, что в определённых условиях элементарные частицы, например, электроны, способны мгновенно сообщаться друг с другом независимо от расстояния между ними. Не имеет значения, 10 футов между ними или 10 миллиардов миль. 

Каким-то образом каждая частица всегда знает, что делает другая. Проблема этого открытия в том, что оно нарушает постулат Эйнштейна о предельной скорости распространения взаимодействия, равной скорости света. 

Поскольку путешествие быстрее скорости света равносильно преодолению временного барьера, эта пугающая перспектива заставила некоторых физиков пытаться разъяснить опыты Aspect сложными обходными путями. Но других это вдохновило предложить даже более радикальные объяснения. 

Например, физик лондонского университета David Bohm посчитал, что из открытия Aspect следует, что объективной реальности не существует, что, несмотря на её очевидную плотность, вселенная в своей основе — фантазм, гигантская, роскошно детализированная голограмма. Чтобы понять, почему Bohm сделал такое поразительное заключение, нужно сказать о голограммах. Голограмма представляет собой трёхмерную фотографию, сделанную с помощью лазера. Чтобы изготовить голограмму, прежде всего фотографируемый предмет должен быть освещён светом лазера. Тогда второй лазерный луч, складываясь с отражённым светом от предмета, даёт интерференционную картину, которая может быть зафиксирована на плёнке. 

Что еще может нести в себе голограмма - еще далеко не известно. Готовый снимок выглядит как бессмысленное чередование светлых и тёмных линий. Но стоит осветить снимок другим лазерным лучом, как тотчас появляется трёхмерное изображение исходного предмета. Трёхмерность — не единственное замечательное свойство, присущее голограмме. Если голограмму с изображением розы разрезать пополам и осветить лазером, каждая половина будет содержать целое изображение той же самой розы точно такого же размера. Если же продолжать разрезать голограмму на более мелкие кусочки, на каждом из них мы вновь обнаружим изображение всего объекта в целом. В отличие от обычной фотографии, каждый участок голограммы содержит информацию о всём предмете, но с пропорционально соответствующим уменьшением чёткости. Принцип голограммы «все в каждой части» позволяет нам принципиально по-новому подойти к вопросу организованности и упорядоченности. 

На протяжении почти всей своей истории западная наука развивалась с идеей о том, что лучший способ понять физический феномен, будь то лягушка или атом, — это рассечь его и изучить составные части. Представьте себе аквариум с рыбой. Голограмма показала нам, что некоторые вещи во вселенной не поддаются исследованию таким образом. Если мы будем рассекать что-либо, устроенное голографически, мы не получим частей, из которых оно состоит, а получим то же самое, но меньшей точностью. Такой подход вдохновил Bohm на иную интерпретацию работ Aspect. Bohm был уверен, что элементарные частицы взаимодействуют на любом расстоянии не потому, что они обмениваются некими таинственными сигналами между собой, а потому, что их разделённость иллюзорна. Он пояснял, что на каком-то более глубоком уровне реальности такие частицы являются не отдельными объектами, а фактически расширениями чего-то более фундаментального. Чтобы это лучше уяснить, 

Bohm предлагал следующую иллюстрацию. Представьте себе аквариум с рыбой. Вообразите также, что вы не можете видеть аквариум непосредственно, а можете наблюдать только два телеэкрана, которые передают изображения от камер, расположенных одна спереди, другая - сбоку аквариума. Глядя на экраны, вы можете заключить, что рыбы на каждом из экранов — отдельные объекты. Поскольку камеры передают изображения под разными углами, рыбы выглядят по-разному. Но, продолжая наблюдение, через некоторое время вы обнаружите, что между двумя рыбами на разных экранах существует взаимосвязь. Когда одна рыба поворачивает, другая также меняет направление движения, немного по-другому, но всегда соответственно первой; когда одну рыбу вы видите анфас, другую непременно в профиль. Если вы не владеете полной картиной ситуации, вы скорее заключите, что рыбы должны как-то моментально общаться друг с другом, чем что это случайное совпадение. 

Вселенная - это голограмма 
Bohm утверждал, что именно это и происходит с элементарными частицами в эксперименте Aspect. Согласно Bohm, явное сверхсветовое взаимодействие между частицами говорит нам, что существует более глубокий уровень реальности, скрытый от нас, более высокой размерности, чем наша, как в аналогии с аквариумом. И, он добавляет, мы видим частицы раздельными потому, что мы видим лишь часть действительности. Частицы — не отдельные «ч?6?
источник

суббота, 23 апреля 2016 г.

Вселенную воссоздали в лабораторных условиях


Условия в нашей огромной Вселенной могут быть самыми разными. Жестокие падения небесных тел оставляют на поверхности планет шрамы. Ядерные реакции в сердцах звезд генерируют огромное количество энергии. Гигантские взрывы катапультируют вещество далеко в космос. Но как именно протекают процессы вроде этих? Что они говорят нам о Вселенной? Можно ли использовать их силу на благо человечества?

Чтобы выяснить это, ученые из Национальной ускорительной лаборатории SLAC провели сложные эксперименты и компьютерное моделирование, воссоздающее жестокие космические условия в микромасштабах лаборатории.

«Сфера лабораторной астрофизики растет быстрыми темпами и подпитывается целым рядом технологических прорывов, — говорит Зигфрид Гленцер, глава научного отделения высоких плотностей энергии в SLAC. — Теперь у нас есть мощные лазеры для создания экстремальных состояний вещества, передовые рентгеновские источники для анализа этих состояний на атомном уровне и высокопроизводительные суперкомпьютеры для проведения комплексных симуляций, которые направляют и помогают объяснить наши эксперименты. С обширными возможностями в этих областях, SLAC становится особенно плодородной почвой для такого рода исследований».

Три недавно проведенных исследования, подчеркивающих этот подход, затрагивают падения метеоров, ядра гигантских планет и космические ускорители частиц, в миллионы раз мощнее Большого адронного коллайдера, крупнейшего ускорителя частиц на Земле.

Космические «побрякушки» указывают на метеоры
Известно, что высокое давление может превращать мягкую форму углерода — графита, который используется в качестве грифеля — в чрезвычайно тяжелую форму углерода, алмаз. Может ли такое произойти, если метеор попадет в графит на земле? Ученые считают, что может, и что эти падения, по сути, могут быть достаточно мощными, чтобы произвести так называемый лонсдейлит, особую форму алмаза, которая даже еще прочнее, чем обычный алмаз.

«Существование лонсдейлита оспаривалось, но теперь мы нашли убедительные доказательства этому», — говорит Гленцер, главный исследователь работы, опубликованной в марте в Nature Communications.

Ученые нагрели поверхность графита мощным оптическим лазерным импульсом, который отправлял ударную волну внутрь образца и быстро его сжимал. Просвечивая источник яркими, сверхбыстрыми рентгеновскими лучами LCLS, ученые смогли увидеть, как шок изменил атомную структуру графита.

«Мы увидели, что в некоторых образцах графита, за несколько миллиардных долей секунды и при давлении в 200 гигапаскалей (в 2 миллиона раз больше атмосферного давления на уровне моря) образовался лонсдейлит», говорит ведущий автор Доминик Крауц из Немецкого центра Гельмгольца, работавший в Калифорнийском университете в Беркли на момент проведения исследований. «Эти результаты мощно поддерживают идею о том, что жестокие удары могут синтезировать эту форму алмаза, и это, в свою очередь, может помочь нам выявить места падения метеоров».

Гигантские планеты превращают водород в металл
Второе исследование, опубликованное на днях в Nature Communications, посвящено другой важной трансформации, которая могла происходить внутри гигантских газовых планет вроде Юпитера, внутренняя часть которых по большей части состоит из жидкого водорода: при высокой температуре и давлении, этот материал переходит из «обычного», электроизолирующего состояния в металлическое, проводящее.

«Понимание этого процесса обеспечивает новые подробности о формировании планет и эволюции Солнечной системы», говорит Гленцер, который также был одним из главных исследователей этой работы. «Хотя такой переход уже был предсказан в 1930-х годах, мы никогда не открывали прямое окошко в атомные процессы».

То есть не открывали до тех пор, пока Гленцер и его коллеги-ученые не провели эксперимент в Национальной лаборатории Ливермора (LLNL), где использовали высокомощный лазер Janus, чтобы быстро сжимать и нагревать образец жидкого дейтерия, тяжелой формы водорода, и создать вспышку рентгеновских лучей, которая выявила последовательные структурные изменения в образце.

Ученые увидели, что выше давления в 250 000 атмосфер и температуры в 7000 градусов по Фаренгейту, дейтерий действительно меняется из нейтральной изолирующей жидкости в ионизированную металлическую.

«Компьютерные моделирования показывают, что переход совпадает с разделением двух атомов, как правило, связанных между собой в молекулах дейтерия», говорит ведущий автор Пол Дэвис, аспирант Калифорнийского университета в Беркли на момент написания исследования. «По всей видимости, давление и температура вызванной лазером ударной волны разрывают молекулы на части, их электроны становятся несвязанными и могут проводить электричество».

В дополнение к планетарной науке, это исследование могло бы также помочь в исследованиях, направленных на использование дейтерия в качестве ядерного топлива для термоядерных реакций.

Как построить космический ускоритель
Третий пример экстремальной вселенной, вселенной «на грани», это невероятно мощные космические ускорители частиц — вблизи сверхмассивных черных дыр, например — извергающие потоки ионизированного газа, плазмы, на сотни тысяч световых лет в космос. Энергия, которая содержится в этих потоках и их электромагнитных полях, может конвертироваться в невероятно энергичные частицы, которые производят очень короткие, но интенсивные вспышки гамма-лучей, которые могут быть обнаружены на Земле.

Ученым хотелось бы узнать, как работают эти энергетические ускорители, поскольку это поможет понять Вселенную. Кроме того, из этого можно было бы извлечь свежие идеи для строительства более мощных ускорителей. В конце концов, ускорение частиц лежит в основе множества фундаментальных физических экспериментов и медицинских устройств.

Ученые полагают, что одна из главных движущих сил, стоящих за космическими ускорителями, может быть «магнитным пересоединением» — процессом, в котором линии магнитного поля в плазме разбиваются и пересоединяются иным путем, выпуская магнитную энергию.

«Магнитное пересоединение ранее наблюдали в лаборатории, например, в экспериментах со столкновением двух плазм, которые были созданы с помощью высокомощных лазеров», говорит Фредерико Фиуца, ученый из научного отделения высоких плотностей энергии и главный исследователь теоретической работы, опубликованной в марте в Physical Review Letters. «Тем не менее ни в одном из таких лазерных экспериментов не наблюдали нетермальное ускорение частиц — ускорение, не связанное с нагревом плазмы. Наша работа показывает, что при определенном проектировании наши эксперименты должны его увидеть».

Его команда провела ряд компьютерных моделирований, которые предсказали, как должны вести себя частицы плазмы в таких экспериментах. Самые серьезные расчеты на основе 100 миллиардов частиц потребовали более миллиона часов работы CPU и более терабайта памяти суперкомпьютера Mira Аргоннской национальной лаборатории.

«Мы определили ключевые параметры для требуемых детекторов, включая энергетический диапазон, в котором они будут работать, необходимое энергетическое разрешение и местоположение в эксперименте, — говорит ведущий автор исследования Самуэль Тоторика, аспирант Стэнфордского университета. — Наши результаты представляют собой рецепт для проектирования будущих экспериментов, которые захотят узнать, как частицы получают энергию в процессе магнитного пересоединения».

источник

воскресенье, 8 ноября 2015 г.

Перельман признался, что умеет управлять Вселенной


Григорий Перельман, доказавший теорему Пуанкаре, над которой бились десятки лет все ученые мира, признался, что знает, как управлять Вселенной, а потому не видит смысла «бежать за миллионом».

четверг, 5 ноября 2015 г.

Возможно, ученые заметили свет другой вселенной


Ученые заметили свечение в космосе, которое могло прийти из другой Вселенной за пределами нашей, которая была рядом, когда материя, нас окружающая, впервые появилась.

понедельник, 7 сентября 2015 г.

Физики предложили объяснение трехмерности Вселенной


Физики из Великобритании, США, Германии и Португалии попробовали объяснить пространственную трехмерность наблюдаемой Вселенной и указать на возможные причины ее раннего инфляционного расширения.

четверг, 13 августа 2015 г.

четверг, 7 мая 2015 г.

Вселенная может быть голограммой

Идея о том, что Вселенная может быть гигантской голограммой — двухмерной реальностью, которая только кажется трехмерной, — уже давно витала в научном сообществе.

среда, 11 марта 2015 г.

Иллюзия Вселенной


Почему наш мир выглядит именно так, а не иначе? Как он на самом деле устроен? Почему в нем случается то, что мы называем чудесами, и почему не всегда работают физические законы?

понедельник, 9 февраля 2015 г.

Может ли галактика Млечный Путь быть порталом в далекую вселенную


По мнению группы ученых из Индии, Италии и США, наша галактика Млечный Путь может быть космической «червоточиной» — экзотическим коротким путем через Вселенную, который знаком вам по фильмам и книгам из области научной фантастики.

понедельник, 22 декабря 2014 г.

Что нужно знать о черных дырах


Возможность появления черных дыр была доказана ещё в XVIII веке. С того времени их изучение является приоритетным направлением науки. О черных дырах слышали все. Между тем, сегодня их существование оспаривается.

пятница, 28 ноября 2014 г.

Где находится центр Вселенной?

То есть по теории Большого взрыва Вселенная начала расширяться. А где находится точка или координаты места начала этого взрыва?

среда, 29 октября 2014 г.

10 неразрешенных загадок природы


Наука
Мало кто не любит загадки, и природа не мелочится, регулярно подбрасывая их людям на протяжении всей истории человечества. Сегодня мы поговорим о тайнах науки, которые серьезно смущают ученых.

суббота, 27 сентября 2014 г.

И все-таки она вертится!




Галилео Галилей – итальянский ученый XVI века, горячий сторонник учения Николая Коперника о гелиоцентрическом устройстве мира. (портрет Галилея кисти Юстуса Сустерманса, 1635)




Ровно 25 лет назад католическая церковь признала, что Земля вращается вокруг Солнца, а не наоборот. Именно в этот день, 24 сентября 1989 года Папа Иоанн Павел II объявил, что всё-таки Галилей был прав, публично принёс извинения учёному и вернул ему «право быть законным сыном церкви». Всего 356 лет понадобилось церкви на то, чтобы признать одно из своих заблуждений.


понедельник, 11 августа 2014 г.

Возраст Вселенной («Познавательная статья из мира науки»)


Возраст Вселенной — время, прошедшее с момента Большого взрыва. Согласно современным научным данным (результаты WMAP9), оно составляет 13,830 ± 0,075 млрд лет. Новые данные, полученные с помощью мощного телескопа-спутника «Планк», принадлежащего Европейскому космическому агентству, показывают, что возраст Вселенной составляет 13,798 ± 0,037 миллиарда лет (68%-й доверительный интервал).